新能源汽車起火事件頻繁進入大眾視野,行業由“里程焦慮”轉入“安全焦慮”。多位業內人士告訴記者,新能源汽車安全事故主要由動力電池熱失控所引起。熱失控原因錯綜復雜,事故源頭難以明確,安全性問題應得到高度重視。
業界不斷反思電動汽車的安全問題,盲目追求高能量密度成為焦點。多位專業人士指出,理論上電池能量密度與安全性成反比。企業追求高能量密度,安全問題隨之暴露。雖然未能明確已發生的起火事件與追求能量密度存在多大相關性,但隨著高鎳三元電池進入市場,新能源汽車面臨更高的安全技術要求。
如何在高能量密度和提高安全性間取得平衡,成為當前業內亟待解決的一大難題。各家企業則從單體電芯、模組設計和電池包的結構設計多個層級提高整體安全性。
安全焦慮
“2018年新能源汽車發生數起召回事件,逐漸走出里程焦慮的新能源汽車似乎陷入安全焦慮困局。”這是一位新能源汽車裝備行業上市公司高管發出的感慨。起火事件頻繁進入大眾視野,新能源汽車安全問題被提及的頻率越來越高。
2018年10月底,國家市場監督管理總局相關負責人稱,據掌握的輿情信息,2018年已發生新能源汽車起火事件40余起。鑒于車輛火災事故可能與電器線路、燃料電池等因素相關,且部分證據在燃燒過程中消失或發生變化,缺陷調查非常困難。截至2018年10月底,該局已組織缺陷產品管理中心啟動新能源汽車缺陷調查10起,會同相關部門開展火災事故現場調查5次,督促相關生產企業實施召回5次。其中,召回涉及5家企業24個車型的3.56萬缺陷車輛,缺陷原因多為電控和機械故障。
“正常行駛情況下,電動車極少會發生安全事故,電動車起火一般發生碰撞、靜止、水浸等特殊場景。”深圳某大型電池廠商研發工程師告訴中國證券報記者。
該人士指出,單從材料體系來看,新能源汽車起火風險要比傳統燃油車高。“鋰是堿金屬里的活潑金屬,電動汽車裝載的鋰離子電池本身就是一個能量體,發生嚴重碰撞會有起火危險。而燃油車基本不存在自燃或爆炸風險,即便撞到油箱,油漏出來后,只要沒有明火點燃,基本不會發生爆炸。”
“電動車誕生之初,行業對其裝載的鋰電池活潑性就有預知,所以一直高度重視汽車安全性問題。2018年以來,多起新能源汽車起火事件加大了消費者擔憂,社會關注度一下起來了。”她告訴記者。
原國家863電動車重大專項動力電池測試中心主任王子冬強調,新能源汽車起火原因未明,安全性問題更應該得到重視。“到底哪個環節出了問題目前還沒有調查清楚,是生產過程中的質量控制?還是后期使用中出現的問題?什么樣的場景下會出現問題,現在都說不清楚。”
安全性的擔憂隨著新能源汽車保有量不斷攀升而加大。據中汽協統計,2018全年新能源汽車銷售125.6萬輛,同比增長61.7%。據平安證券披露的研報,2018年全國新能源汽車保有量達261萬輛,占汽車總量的1.09%。從統計情況看,近五年新能源汽車保有量年均增加50萬輛。
“隨著新能源汽車保有量越來越多,安全事故數量也在攀升?,F在發生安全事故的新能源汽車主要是2016年、2017年生產的。隨著汽車技術不斷提升,起火概率逐步降低,但目前的安全事故比例仍偏高,應該引起行業重視。”業內人士告訴中國證券報記者。
探究原因
業內人士認為,新能源汽車安全事故主要由動力電池熱失控造成。上述深圳某大型電池廠商研發工程師指出,熱失控是指電池內部短路導致正負極接觸,內部溫度不斷升高引發電池芯體起火,進而蔓延到周圍電芯。
“熱失控僅僅是結果。電池熱失控原因錯綜復雜,這也是業內認為事故源頭難以明確的主要原因。”某券商新能源汽車分析師指出。
嚴重碰撞和電池過充被認為是引發電池熱失控的兩大原因。“這兩類場景都容易導致熱失控。嚴重碰撞會令電芯變形,導致內短路并引發熱失控。另外一種情況是電池過充。正常情況下如果電池過充,BMS(電池管理系統)有斷電保護功能。當BMS管理失效的時候,電量驅使鋰離子不斷聚集最終造成熱失控。”一位不愿具名的業內人士指出。
業界在不斷反思汽車安全性問題,盲目追求高能量密度成為討論焦點。
電池的能量密度指的是電池平均單位體積或質量所釋放出的電能。真鋰研究首席分析師墨柯指出,按照鎳鈷錳的比例,三元可以分為523、622、811多個體系。目前市場主流電池體系為523,高鎳三元材料(622、811)由于具備高能量密度優勢成為行業研發重點。
“從三元材料體系本身來說,鎳的含量越高,安全性越來越差。”上述深圳某大型電池廠商研發工程師指出,“能量密度跟安全性相當于杠桿的兩端,一端高,另一端就低,很難平衡。隨著電池能量密度越來越高,單位體積或質量聚集的能量越大,安全性越來越差,暴露的問題就越多。”
業內人士認為,從市場情況出發,行業確實存在提高能量密度、增加續航能力的內在需求。
續航能力一直被認為是評價新能源汽車性能的關鍵指標。為了提高續航里程,新能源汽車補貼政策直接與電池能量密度掛鉤。根據2018年6月實施的補貼政策,電池系統能量密度補貼門檻由2017年的90Wh/kg提升至105Wh/kg,105(含)-120Wh/kg的車型按0.6倍補貼,120(含)-140Wh/kg的車型按1倍補貼,140(含)-160Wh/kg的車型按1.1倍補貼,160Wh/kg及以上的車型按1.2倍補貼。
“為拿到補貼,很多廠商盲目追求高能量密度,犧牲了部分安全性。前幾年我們就很擔憂事故風險。”上述業內人士指出。舉個例子,乘用車尺寸相對比較小,想要增加里程,只能放更多的電池或排列得更擠。很多電池廠就將安全冷卻方式從液冷改為風冷。液冷的冷卻效果更佳,但管道、系統占空間,導致電池包能量密度下降。相比之下,風冷系統占據空間小但效果一般,一定程度上增加了安全風險。
該人士同時強調,由于電池開發周期和補貼退坡周期不匹配,盲目追求補貼導致電池驗證不足,進而引發安全問題。“補貼退坡的政策周期通常為一年重新發布,一款新的新能源車開發周期包括設計、驗證、測試、量產、調試等,單從設計到量產就至少需要一年時間。如果按正常節奏開發,可能上不了最新的補貼目錄。這就倒逼行業縮短設計、驗證流程,可能留下安全隱患。”